200 research outputs found

    Oscillation modes of relativistic slender tori

    Full text link
    Accretion flows with pressure gradients permit the existence of standing waves which may be responsible for observed quasi-periodic oscillations (QPO's) in X-ray binaries. We present a comprehensive treatment of the linear modes of a hydrodynamic, non-self-gravitating, polytropic slender torus, with arbitrary specific angular momentum distribution, orbiting in an arbitrary axisymmetric spacetime with reflection symmetry. We discuss the physical nature of the modes, present general analytic expressions and illustrations for those which are low order, and show that they can be excited in numerical simulations of relativistic tori. The mode oscillation spectrum simplifies dramatically for near Keplerian angular momentum distributions, which appear to be generic in global simulations of the magnetorotational instability. We discuss our results in light of observations of high frequency QPO's, and point out the existence of a new pair of modes which can be in an approximate 3:2 ratio for arbitrary black hole spins and angular momentum distributions, provided the torus is radiation pressure dominated. This mode pair consists of the axisymmetric vertical epicyclic mode and the lowest order axisymmetric breathing mode.Comment: submitted to MNRA

    Epicyclic oscillations of non-slender fluid tori around Kerr black holes

    Full text link
    Considering epicyclic oscillations of pressure-supported perfect fluid tori orbiting Kerr black holes we examine non-geodesic (pressure) effects on the epicyclic modes properties. Using a perturbation method we derive fully general relativistic formulas for eigenfunctions and eigenfrequencies of the radial and vertical epicyclic modes of a slightly non-slender, constant specific angular momentum torus up to second-order accuracy with respect to the torus thickness. The behaviour of the axisymmetric and lowest-order (m=±1m=\pm 1) non-axisymmetric epicyclic modes is investigated. For an arbitrary black hole spin we find that, in comparison with the (axisymmetric) epicyclic frequencies of free test particles, non-slender tori receive negative pressure corrections and exhibit thus lower frequencies. Our findings are in qualitative agreement with the results of a recent pseudo-Newtonian study of analogous problem defined within the Paczy{\'n}ski-Wiita potential. Implications of our results on the high-frequency QPO models dealing with epicyclic oscillations are addressed.Comment: 24 pages, 8 figure

    Broad-band continuum and variability of NGC 5548

    Get PDF
    We analyze a composite broad-band optical/UV/Xgamma-ray spectrum of the Seyfert 1 galaxy NGC 5548. The spectrum consists of an average of simultaneous optical/IUE/Ginga observations accompanied by ROSAT and GRO/OSSE data from non-simultaneous observations. We show that the broad-band continuum is inconsistent with simple disk models extending to the soft X-rays. Instead, the soft-excess is well described by optically thick, low temperature, thermal Comptonization which may dominate the entire big blue bump. This might explain the observed tight UV/soft X-ray variability correlation and absence of a Lyman edge in this object. However, the plasma parameters inferred by the spectrum need stratification in optical depth and/or temperature to prevent physical inconsistency. The optical/UV/soft X-ray component contributes about half of the total source flux. The spectral variations of the soft-excess are consistent with that of the UV and argue that the components are closely related. The overall pattern of spectral variability suggests variations of the source geometry, and shows the optical/UV/soft X-ray component to be harder when brighter, while the hard X-ray component is softer when brighter.Comment: 5 pages, 3 figures, LaTex, using AIP macro, to appear in Proceedings of "4th Compton Symposium", April 27-30, 1997, Williamsburg, Virginia, US

    Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    Full text link
    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung luminosities. On the other hand, when the recoil direction has a component orthogonal to the disk's angular momentum, the disk's dynamics are strongly impacted, giving rise to relativistic shocks. The shock heating leaves its signature in our proxies for radiation, the total internal energy and bremsstrahlung luminosity. Interestingly, for cases where the kick velocity is below the smallest orbital velocity in the disk (a likely scenario in real AGN), we observe a common, characteristic pattern in the internal energy of the disk. Variations in kick velocity simply provide a phase offset in the characteristic pattern implying that observations of such a signature could yield a measure of the kick velocity through electromagnetic signals alone.Comment: 10 pages, 13 figures. v2: Minor changes, version to be published in PR

    Gravitational Radiation Instability in Hot Young Neutron Stars

    Get PDF
    We show that gravitational radiation drives an instability in hot young rapidly rotating neutron stars. This instability occurs primarily in the l=2 r-mode and will carry away most of the angular momentum of a rapidly rotating star by gravitational radiation. On the timescale needed to cool a young neutron star to about T=10^9 K (about one year) this instability can reduce the rotation rate of a rapidly rotating star to about 0.076\Omega_K, where \Omega_K is the Keplerian angular velocity where mass shedding occurs. In older colder neutron stars this instability is suppressed by viscous effects, allowing older stars to be spun up by accretion to larger angular velocities.Comment: 4 Pages, 2 Figure

    Persistent and Transient Blank Field Sources

    Get PDF
    Blank field sources (BFS) are good candidates for hosting dim isolated neutron stars (DINS). The results of a search of BFS in the ROSAT HRI images are revised. We then focus on transient BFS, arguing that they belong to a rather large population. The perspectives of future research on DINS are then discussed.Comment: 3 pages, 0 figures. Paper presented at the Conference "Isolated Neutron Stars: from the interior to the surface", London, April 2006. Astrophysics and Space Science, in pres
    • …
    corecore